Wavelet decomposition and embeddings of generalised Besov–Morrey spaces

نویسندگان

چکیده

We study embeddings between generalised Besov–Morrey spaces Nφ,p,qs(Rd). Both sufficient and necessary conditions for the are proved. Embeddings of into Lebesgue Lr(Rd) also considered. Our approach requires a wavelet characterisation which we establish system Daubechies wavelets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Wavelet Decomposition of Calderon - Zygmund Operators on Function Spaces

We make use of the Beylkin-Coifman-Rokhlin wavelet decomposition algorithm on the CalderonZygmund kernel to obtain some fine estimates on the operator and prove the T(\) theorem on Besov and Triebel-Lizorkin spaces. This extends previous results of Frazier et at., and Han and Hofmann. 2000 Mathematics subject classification: primary 42B20, 46B30.

متن کامل

Embeddings of polar spaces

In this article, two different notions of embeddings of polar spaces are compared. By using existing results in the field, a statement for a Fundamental Theorem of Polar Geometry is then obtained.

متن کامل

On the Decomposition of Hilbert Spaces

Basic relation between numerical range and Davis-Wielandt shell of an operator $A$ acting on a Hilbert space with orthonormal basis $xi={e_{i}|i in I}$ and its conjugate $bar{A}$ which is introduced in this paper are obtained. The results are used to study the relation between point spectrum, approximate spectrum and residual spectrum of $A$ and $bar{A}$. A necessary and sufficient condition fo...

متن کامل

Isometric Embeddings and Universal Spaces

We show that if a separable Banach space Z contains isometric copies of every strictly convex separable Banach space, then Z actually contains an isometric copy of every separable Banach space. We prove that if Y is any separable Banach space of dimension at least 2, then the collection of separable Banach spaces which contain an isometric copy of Y is analytic non Borel.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2022

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2021.112590